

A Dynamical Model for Magnetic Signal Interpretation in Relativistic Electron Beam Heated Plasmas

K. R. CHU

Science Applications, Inc. McLean, Virginia

and

R. W. CLARK

Plasma Dynamics Branch Plasma Physics Division

October 1976

NAVAL RESEARCH LABORATORY Washington, D.C.

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER NRL Memorandum Report. TITLE (MI Sublille) 5. TYPE OF REPORT & PERIOD COVERED Interim report on a continuing A DYNAMICAL MODEL FOR MAGNETIC SIGNAL NRL problem. INTERPRETATION IN RELATIVISTIC ELECTRON BEAM 6. PERFORMING ORG. REPORT NUMBER HEATED PLASMAS. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(4) K.R. Chu* and R.W./Clark 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory NRL Problem H02-28B Washington, D.C. 20375 1. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE Office of Naval Research October 1976 Arlington, Virginia 22217 22 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 154. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES This work was supported by the Office of Naval Research. *Present address: Science Applications, Incorporated, 8400 Westpark Drive, McLean, Virginia 22101. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Electron beam Heating Magnetic probe 20. ASSTRACT (Continue on reverse side if necessary and identify by block number) A dynamical model is developed to infer the plasma energy from local and global magnetic field measurements. Physical processes involved are macroscopic and observable. Scaling laws provide further checks. This model, when applicable, should be employed to estimate the plasma energy in rapidly pulsed heating experiments, where static pressure balance models have been commonly used.

> SECURITY CLASSIFICATION OF THIS PAGE (When Date Entere 251950

LUCIPHITY CLASSIFICATION OF THIS PAGE(When Date Entered)

A DYNAMICAL MODEL FOR MAGNETIC SIGNAL INTERPRETATION IN RELATIVISTIC ELECTRON BEAM HEATED PLASMAS

In recent years, many experimental efforts $^{1-11}$ have been made to achieve rapid plasma heating by the use of intense relativistic electron beams. Typically, a beam of 50-200 nsec duration is injected into a plasma or neutral gas column magnetized by a uniform magnetic field B_0 . In such experiments, the most commonly used diagnostic tool to measure the plasma energy is either a magnetic probe or a diamagnetic loop. To calculate the plasma perpendicular energy density W_1 from the probe or loop measurements, a sharp boundary static pressure balance model is commonly assumed. For example, if δB_Z is the measured (para) magnetic field variation between the hot plasma and a metallic wall of radius r_W then from the pressure balance equation,

$$B_{zi}^2 + 8\pi W_1 = (B_0 + \delta B_z)^2$$
 (1)

where $\mathbf{B}_{\mathbf{Z}\,\mathbf{i}}$ is the magnetic field inside the hot plasma, and invoking conservation of magnetic flux, $\mathbf{W}_{\mathbf{i}}$ can be expressed as

$$W_{\perp} \sim \frac{1}{4\pi} \left(\frac{r_{w}}{r_{eq}}\right)^{2} B_{o} \delta B_{z}, \text{ for } \delta B_{z} \ll B_{o}$$
 (2)

where r_{eq} is the hot plasma radius at equilibrium.

However, static models are not always valid. Under some conditions (discussed below), the establishment of a plasma equilibrium after rapid beam energy deposition involves relatively slow mass motion of the plasma; consequently, on the time scale of the experiment, the equilibrium state indicated by Equation 1 cannot be reached.

Furthermore, the measured δB_Z under such conditions may be the amplitude of a magnetosonic wave, instead of the depth of a magnetic well. Therefore, an alternative model is needed when the validity of the static model becomes questionable.

Note: Manuscript submitted September 20, 1976.

Physically, two limiting regimes can be distinguished—the resistive 12,13 regime and the reactive 16 regime. If

$$\tau_i$$
 and/or $\tau_m << \tau_A$ (3)

where τ_i is the ion collision time, τ_m is the magnetic diffusion time, and $\tau_A = r_b/v_A$ (r_b is the beam radius, v_A is the Alfven speed), the system is in the resistive regime and is characterized by magnetic diffusion processes $^{12-15}$. The correlation between (the nonoscillatory) δB_z and a given diamagnetic current in this regime has been discussed by Guillory and Bailey 14 , and Striffler and Kapetanakos 15 . In the reactive regime,

$$\tau_i$$
 and $\tau_m \ll \tau_A$ (4)

the system is characterized by gross plasma motions, namely, magnetosonic oscillations 16 , 17 . The latter regime applies to plasmas with sufficiently high temperatures. Recently, oscillatory magnetic signals have been reported 5 , 7 , 9 , 10 and identified 5 , 7 , 9 as magnetosonic oscillations. With improved heating, future experiments are likely to be in this regime also. Hereafter, we will be concerned with this regime only.

It is important to distinguish two cases according to experimental conditions. Case 1: the hot plasma is surrounded by vacuum or by a neutral gas; Case 2: it is surrounded by a cold plasma. For case 1, B_z between the plasma and the wall, though oscillatory, is spatially uniform (Fig. 1a), thus the static model gives a reasonable estimate of W_1 provided one takes the time averaged δB_z and determines r_{eq} consistently. For case 2, on the other hand, the probe or loop (immersed in the cold plasma) will measure a magnetosonic wave (Fig. 1b) generated by the beam energy deposition and the correlation between δB_z and W_1 is determined by the dynamics of the plasma, rather than by the condition of static pressure balance. The implication of δB_z in this case is thus qualitatively different from that of case 1. For example, roughly speaking, the wall would have no effect on the peak

probe signal if $r_0 \le \frac{4}{5}r_p$ and it has no effect on the peak loop signal if $r_0 \le \frac{2}{3}r_p$, where r_p is the plasma radius, r_0 is the probe position for loop radius and we have assumed constant wave speed. Clearly, if the above conditions are satisfied, W_1 given by Eq. (2), which scales as r_w^2 , is inapplicable.

In most experiments, 1-6,9,11 the plasma is preformed by a discharge; it is reasonable that in these experiments case 2 prevails. To the authors' knowledge, a proper theoretical model to interpret probe or loop data for case 2 in the reactive regime has hitherto been lacking, although there are ample experimental evidences that this regime has indeed been observed. In the following, we develop a dynamical model applicable to this regime.

Formulation

We make the following assumptions: (1) $\partial/\partial\theta = \partial/\partial z = 0$; (2) $v_{iz} = v_{ez} = 0$; (3) initially uniform plasma $(n=n_0)$ maintaining quasineutrality; this, together with the previous two assumptions, implies $v_{er} = v_{ir} = v_{r}$; (4) $v_{A} << c$; (5) neglecting electron inertia and ion pressure; (6) neglect electron and ion collisions; (7) neglect radial thermal conduction—this requires $(r_b/\rho_e)^2 v_e^{-1} >> \tau_A$, where ρ_e is the electron Larmor radius and v_e is the electron collision frequency; (8) neglect wall effect; and (9) isotropic electron velocity distribution. The system is then described by

$$(\frac{\partial}{\partial \overline{t}} + \overline{v}_r \frac{\partial}{\partial \overline{r}}) \overline{v}_r = \overline{E}_r$$
 (5)

$$\overline{B}_{z} \frac{\partial}{\partial \overline{r}} \overline{B}_{z} = -\overline{n} \overline{E}_{r} - \frac{1}{2} \frac{\partial}{\partial \overline{r}} \overline{P}_{e}$$
 (6)

$$\overline{B}_{z}\overline{v}_{r} = \overline{E}_{\Theta} \tag{7}$$

$$\frac{1}{r} \frac{\partial}{\partial r} (\overline{rE}_{\Theta}) = -\frac{\partial}{\partial \overline{t}} \overline{B}_{Z}$$
 (8)

$$\frac{\partial}{\partial \overline{t}} \overline{n} + \frac{1}{\overline{r}} \frac{\partial}{\partial \overline{r}} (\overline{r} \overline{n} \overline{v}_{r}) = 0$$
 (9)

$$\left(\frac{\partial}{\partial \overline{t}} + \overline{v}_r \frac{\partial}{\partial \overline{r}}\right) \left(\overline{p}_e \overline{n}^{\frac{5}{3}}\right) = \frac{2}{3} \overline{n}^{\frac{5}{3}} \overline{Q}_b$$
 (10)

where overbars represent normalized quantities defined as follows: $\overline{t} \equiv t/\tau_A$, $\overline{r} \equiv r/r_b$, $\overline{n} \equiv n/n_o$, $\overline{p}_e \equiv 8\pi nkT_e/B_o^2$, $\overline{B}_z \equiv B_z/B_o$, $\overline{E}_r \equiv E_r r_b e/m_i v_A^2$, $\overline{E}_\Theta \equiv E_\Theta c/v_A B_o$, $\overline{v}_r \equiv v_r/v_A$, $\overline{Q}_b \equiv Q_b \ 8\pi \tau_A/B_o^2$ and Q_b is the rate of beam energy deposition per unit volume. We let

$$\overline{Q}_{b} = \begin{cases} \frac{\pi(s+2)}{2s\overline{\tau}_{b}} & \beta_{E}[1-\overline{r}^{-s}] \sin \frac{\pi \overline{t}}{\overline{\tau}_{b}}, \text{ if } \overline{r} \leq 1, \overline{t} \leq 1\\ & 0, \text{ otherwise} \end{cases}$$

where $\overline{\tau}_b = \tau_b/\tau_A$ is the normalized beam duration, the free parameter $\beta_E = \frac{1}{\pi} \int_0^1 2\pi \overline{r} d\overline{r} \int_0^{\overline{\tau}_b} d\overline{t} \ \overline{\mathbb{Q}}_b$, is the space and time integrated beam

energy deposition scaled to the total external magnetic field energy within the beam volume $(r \le r_b)$ and s is a steepness parameter to account for the spatial inhomogeneity of beam energy deposition. Note that the only parameters to specify are those contained in \overline{Q}_b (i.e., s, $\overline{\tau}_b$, and β_E). All other parameters such as B_0 , n_0 , r_b , etc., are scaled out of Eqs. (5)-(10) through normalization.

Solutions

The radial one-dimensional evolution of the system is computed from Eqs. (5)-(10) using a hydromagnetic code which employs a two-step Lax-Wendroff flux corrected transport (FCT) algorithm. 18,19

Results of our calculations are schematically presented. Figure 2a shows typical radial profiles of \overline{B}_z . Figure 2b plots typical probe signals $[\delta \overline{B}_z(\overline{r}_0)]$ and loop signals

$$\delta \overline{\phi}(\overline{r}) \equiv \int_{0}^{\overline{r}_{0}} d\overline{r}' 2\pi \overline{r}' \delta \overline{B}_{z}(\overline{r}')$$

as would be measured by a probe or loop with $r_0 = 1.2$. If a conducting wall is present, wave bouncing will predictably produce a second, third peak, and so on.

Figures 3a and b plot the peak probe signals $(\delta \overline{B}_Z^p)$ and loop signals $(\delta \overline{\phi}^p)$ versus the total energy deposited (β_E) . Each family of curves is generated by the parameter $\overline{\tau}_b$. We note that for the same amount of energy deposited, a faster rate of deposition (i.e., smaller $\overline{\tau}_b$) results in larger wave amplitude (see the $\delta \overline{B}_Z^p$ curves), and stronger dispersion or nonlinearity (see the bending of the $\delta \overline{\phi}^p$ curves). Such differences can be distinguished in the present dynamical model, but not in the static model. Since $\delta \overline{B}_Z^p$ is a local quantity and $\delta \overline{\phi}^p$ is a global quantity, $\overline{\tau}_b$ has less effect on the latter.

All calculations presented so far are for the steepness parameter s=2. We have varied s in our runs and found that the s=1 case gives slightly (<15%) higher $\delta \overline{B}_Z^p$ and the s=3 case gives slightly (<10%) lower $\delta \overline{B}_Z^p$. The effect of s on $\delta \overline{\phi}^p$ is much weaker.

Because of the normalized parameter system employed here, the data shown in Figs. 3a and b have general applicability. As an example, consider the Physics International experiment recently reported by Prono, et al. 10 Their high ν/γ beam heating scheme produced an impressive plasma energy density as high as 10^{19} eV/cm 3 . There is

little question that the experiment was in the reactive regime. The static model that they used to interpret the probe signal is appropriate for the situation depicted in Fig. 1a. If the situation was more like Fig. 1b instead, then the dynamical model should have been used. In any case, it is interesting to compare their interpretations with those given by the dynamical model. Using their published data, we obtain $\overline{r}_0 \simeq 1.2$, $\overline{\tau}_b \simeq 1-2$, and $\delta \overline{B}_z^p \simeq 0.1$, thus from Fig. 4a, $B_E \simeq 0.7-1.0$, which corresponds to an average plasma energy density of 4-6 x 10^{18} eV/cm³, in agreement with their interpretations. We point out, however, that the agreement between the two interpretations is coincidental in view of the qualitative differences between the models used.

Finally, if either collisions (magnetic diffusion effect) or thermal conduction (cooling effect) were included in our model, the calculated signals ($\delta \overline{B}_Z^p$ and $\delta \overline{\phi}^p$) would be weaker. Thus, β_E inferred from the present model yields a conservative estimate of beam energy deposition.

The authors would like to thank Drs. D. Book, D. A. Hammer, and C. C. Wei for helpful discussions.

REFERENCES

- A. T. Altyntsev, A. G. Es'kov, O. A. Zolotovskii, V. I. Koroteev, R. Kh. Kurtmullaev, V. D. Masalov, and V. N. Semenov, ZhETF Pis. Red. 13, No. 4, 197 (1971) [Sov. Phys. JEPT Lett. 13, 139 (1971)].
- D. R. Smith, Phys. Letters A 42, 211 (1972).
- 3. P. A. Miller, and G. W. Kuswa, Phys. Rev. Letters 30, 958 (1973).
- C. A. Kapetanakos and D. A. Hammer, Appl. Phys. Letters <u>23</u>, 17 (1973).
- Yu. I. Abrashitov, V. S. Koidan, V. V. Konyukhov, V. M. Lagunov, V. N. Luk'yanov, K. I. Mekler and D. D. Ryutov, Zh. Eksp. Teor. Fiz. 66, 1324 (1974) [Sov. Phys. JETP 39, 647 (1974)].
- G. C. Goldenbaum, W. F. Dove, K. A. Gerber and B. G. Logan, Phys. Rev. Lett. 32, 830 (1974).
- C. Ekdahl, M. Greenspan, R. E. Kribel, J. Sethian and C. B. Wharton, Phys. Rev. Lett. 33, 346 (1974).
- J. P. Vandevender, J. D. Kilkenny and A. E. Dangor, Phys. Rev. Lett. 33, 689 (1974).
- C. A. Kapetanakos, W. M. Black and K. R. Chu, Phys. Rev. Lett. 34, 1156 (1975).
- D. Prono, B. Ecker, N. Bergstrom and J. Benford, Phys. Rev. Lett. 35, 438 (1975).
- W. F. Dove, K. A. Gerber and D. A. Hammer, Appl. Phys. Lett. 28, 173 (1976).
- K. R. Chu and N. Rostoker, Phys. of Fluids <u>17</u>, 813 (1974).
- K. Molvig, N. Rostoker and F. Dothan, <u>Plasma Physics and Controlled Nuclear Fusion Research</u>, Proceedings of the Fifth International Conference, Tokyo (IAEA, Vienna, 1975), Vol. 3, p. 249.
- J. Guillory and V. Bailey, Bull. Am. Phys. Soc. <u>18</u>, 1349 (1973).
- C. D. Striffler and C. A. Kapetanakos, J. Appl. Phys. <u>46</u>, 2509 (1975).

- K. R. Chu, C. A. Kapetanakos and R. W. Clark, Appl. Phys. Lett. <u>27</u>, 185 (1975).
- K. R. Chu, R. W. Clark, M. Lampe, P. C. Liewer and W. M. Manheimer, Phys. Rev. Lett. <u>35</u>, 94 (1975).
- 18. J. P. Boris and D. L. Book, J. Comp. Phys. <u>11</u>, 38 (1973).
- 19. D. L. Book, J. P. Boris and K. Hain, J. Comp. Phys. 18, 248 (1975).
- 20. The present fluid model only gives isotropic energy density. It cannot distinguish the Maxwellian distribution from, for example, the two-bump distribution.
- 21. Experimentally, this question can be resolved by measuring $\delta \overline{B}_{j}$ at two radial positions outside the beam channel and observing their phase relationship.

Fig. 1 — Qualitative profile of B_z after beam energy deposition; (a) hot plasma surrounded by vacuum or neutral gas, (b) hot plasma surrounded by cold plasma

Fig. 2 — (a) Typical radial profiles of \overline{B}_z at $\overline{t}=0.75$ as computed from Eqs. (5)-(10). (b) Typical probe signals $(\delta \overline{B}_z)$ and loop signals $(\delta \phi)$ at probe position (or loop radius) $\overline{r}_o=1.2$. For both figures, s=2, $\overline{\tau}_b=0.5$.

Fig. 3 — Peak probe signals $(\delta \overline{B}_2^p)$ and peak loop signals $(\delta \overline{\phi}^p)$ versus β_E , for s = 2

DISTRIBUTION LIST

25 copies

150 copies

DIRECTOR

Naval Research Laboratory Washington, D.C. 20375

ATTN: HDQ COMM DIR Bruce Wald

DIRECTOR

Naval Research Laboratory Washington D. C. 20375

ATTN: CODE 5460 Radio Propagation BR

DIRECTOR

Naval Research Laboratory Washington, D. C. 20375

ATTN: CODE 7127, Charles Y. Johnson

DIRECTOR

Naval Research Laboratory Washington, D. C. 20375

ATTN: CODE 7701 Jack D. Brown

DIRECTOR

Naval Research Laboratory Washington, D. C. 20375

ATTN: CODE 7700, Division Superintendent

DIRECTOR

Naval Research Laboratory Washington, D.C. 20375

ATTN: CODE 7750, Branch Head

COMMANDER

Naval Space Surveillance System

Dahlgren, Va. 22448 ATTN; CAPT. J. H. Burton

COMMANDER

Naval Surface Weapons Center

White Oak, Silver Spring, Md. 20910

ATTN; CODE 730 Tech. Lib.

COMMANDER

Naval Surface Weapons Center

White Oak, Silver Spring, Md. 20910

ATTN; CODE 1224 Navy Nuc Prgms Office

DIRECTOR

Strategic Systems Project Office

Navy Department

Washington, D. C. 20376

ATTN: NSP-2141

COMMANDER ADC/AD ENT AFB CO 80912 ATTN: ADDA

AF Cambridge Rsch Labs, AFSC L. G. Hanscom Field Bedford, MA 01730 ATTN: LKB Kenneth S. W. Champion

AF Cambridge Rsch Labs, AFSC L. G. Hanscom Field Bedford, MA 01730 ATTN: OPR Hervey P. Gauvin

AF Cambridge Rsch Labs, AFSC L. G. Hanscom Field Bedford, MA 01730 ATTN: OPR James C. Ulwick

AF Weapons Laboratory, AFSC Kirtland AFB, NM 87117 ATTN: DYT LT Mark A. Fry

AF Weapons Laboratory, AFSC Kirtland AFB, NM 87117 ATTN: DYT CAPT Whittwer

AF Weapons Laboratory, AFSC Kirtland AFB, NM 87117 ATTN: John M. Kamm SAS

AF Weapons Laboratory, AFSC Kirtland AFB, NM 87117 ATTN: SUL

AFTAC Patrick AFB, FL 32925 ATTN: TF MAJ. E. Hines

AFTAC Patrick AFB, FL 32925 ATTN: TF/CAPT. Wiley

Massachusetts Institute of Technology Lincoln Laboratory 244 Wood Street Lexington, Mass. 02173 ATTN: J. Evans and D. Towle University of Pittsburgh of the Commonwealth System of Higher Education Cathedral of Learning Pittsburgh, Pa. 15213 ATTN: C. Ray, Security Officer Prof. Wade Fite Dr. F. Kaufman, 205 SRCC Bldg.

AVCO-EVERETT Research Laboratory 2585 Revere Beach Parkway Everett, Mass. 02149 Attn: Technical Library Attn: Dr. R. Patrick and Dr. J. Workman

Bell Telephone Labs., Inc. Whippany Road Whippany, New Jersey 07981 ATTN: Lyman Fretwell

General Electric Company
Tempe Center for Advanced Studies
816 State Street
Santa Barbara, California 93102
ATTN: W. Chan, Robert L. Bogusch,
Warren Knapp, DNA Information
and Analysis Center

General Research Corporation P.O. Box 3587 Santa Barbara, Calif. 93105 ATTN: Dr. John Ise

Director
Defense Research and Engineering
Washington, D. C.
ATTN: Deputy Dir. Res. and Advanced Tech.

Director
Advanced Research Projects Agency
Washington, D. C. 20301
ATTN: LtC Wm. Whitaker

Director
Defense Nuclear Agency
6801 Telegraph Road
Alexandria, Va. 20305

ATTN: RAAE
ATTN: Technical Library (STTL)
ATTN: RAEV
ATTN: STUL

Commander
Field Command
Defense Nuclear Agency
Albuquerque, New Mexico 87115

Director
Defense Intelligence Agency
Washington, D.C. 20301
ATTN: Reference Library Branch

Commander
Harry Diamond Laboratories
2800 Powder Mill Road
Adelphia, Md. 20783
ATTN: DRXDC-TD

Director
Ballistic Missile Defense Advanced Technical Center
Huntsville Office
P.O. Box 1500
Huntsville, Alabama 35807
ATTN: Melvin T. Capps
ATC-T

Director
Ballistic Missile Defense Program Officer
Commonwealth Bldg.,
Arlington, Va. 22209
ATTN: Dep BMDPM Mr. Julian Davidson
Mr. Archie Gold

Director
US Army Ballistic Research Laboratories
Aberdeen, Maryland
ATTN: Mr. Frank Niles

Dr. J. Martineau Centre de l'Energie University of Quebec, INRS CP 1020 Varennes, Quebec, CANADA

Dr. R. Papoular Comm. Energie Atomique - France B. P. No. 6 - Fontenay - Aux - Roses - 92 France

Dr. Ralph Rudder
Air Force Weapons Laboratory
LRE - Kirkland AFB
New Mexico 87117

Dr. David Smith United Aircraft Research Laboratories 400 East Main Street East Hartford, Conn. 06108

Dr. R. G. Tomlinson United Aircraft Research Laboratories Silver Lane E. Hartford, Conn. 06108

Dr. Robert Turner Applied Physics Laboratory Johns Hopkins 8621 Georgia Avenue Silver Spring, Md. 20910

Dr. George Vlaska Aerospace Research Laboratory University of Washington Seattle, Washington 98105

Dr. H. J. Kunze
Abteilung fur Physik und Astronomie, Ruhr - Universitat
463 Bochum
Postfach 2148
West Germany

Dr. A. W. DeSilva/Dr. R. C. Davidson/ Dr. J.U. Guillory University of Maryland Department of Physics and Astronomy College Park, Maryland 20742

Dr. A. J. Alcock National Research Council Physics Division 100 Sussex Drive Ottawa, Ontario, Canada

Dr. Martin C. Richardson National Research Council Physics Division 100 Sussex Drive Ottawa 2, Ontario, CANADA

Dr. Keith Boyer Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, New Mexico 87544

Dr. John W. Deiber Dr. Ron Rehm Cornell Aeronautical Laboratory 4455 Genesee Street Buffalo, New York 14221 Dr. D. F. Dubois Hughes Research Laboratories 3011 Malibu Canyon Road Malibu, California 90265

Dr. A. G. Engelhardt Hydro-Quebec Institute of Research 1800 Montee Ste-Julie, Varennes P. Q., Canada

Dr. T. V. George Westinghouse Research Labs. Pgh. Pittsburgh, Pa. 15235

Dr. Martin V. Goldman
Department of Astro-Geophysics
University of Colorado
Boulder, Colorado 80302

Dr. Arthur H. Guenther
Air Force Weapons Laboratory (S.Y.)
Kirtland Air Force Base
Albuquerque, New Mexico 87117

Mr. Roger Case
Air Force Weapons Laboratory
Kirtland Air Force Base
Albuquerque, New Mexico 87117

Dr. Eric D. Jones Sandia Laboratories Div. 5214 P.O. Box 5800 Albuquerque, New Mexico 87115

Dr. Moshe J. Lubin University of Rochester Laboratory for Laser Energeties Mech. and Aerospace Sciences, Dept. Rochester, N. Y. 14627

Dr. Philip Mallozzi Battelle Memorial Institute Dept. of Physics 505 King Avenue Columbus, Ohio 43201

Dr. James Shearer Lawrence Livermore Lab. P. O. Box 808 Livermore, California 94551 Dr. Donald W. Kerst/ Dr. R. S. Post University of Wisconsin Sterling Hall Department of Physics Madison, Wisconsin 53706

Prof. J. G. Hirschberg, Jr. University of Miami Department of Physics Coral Gables, Florida 33124

Dr. L. P. Bradley Lawrence Livermore Laboratory P.O. Box 808 Livermore, Calif. 94551

Prof. Frank Chen / Prof. M.C. Luhmann Department of Engineering University of California Los Angeles, Calif. 90024

Prof. Alfred Wong / Prof. J. Dawson Department of Physics University of California Los Angeles, Calif. 90024

Dr. Stephen O. Dean Division of Research Energy Research and Development Administration Washington, D.C. 20545

Dr. Roy Gould Cal. Inst. Tech. Pasadena, Calif. 91109

Dr. J. Decker/ Dr. W. F. Dove DCTR Energy Research and Development Administration Washington, D. C. 20545

Mr. W. C. Gough / F. R. Scott Electric Power Research Institute Washington, D.C. 20545

Dr. S. J. Buchsbaum Bell Telephone Labs P. O. Box 262 Murray Hill, N. J. 07904

Dr. D. J. Rose Oak Ridge National Lab. P. O. Box X Oak Ridge, Tenn. 37830 Dr. A. E. Ruark 7952 Orchid St. N. W. Washington, D.C. 20012

Maxwell Laboratories
9244 Balboa Avenue
San Diego, California 92123
ATTN: Dr. A. C. Kolb
Dr. Peter Korn

Dr. V. Fargo Mr. J. Shannon

Dr. A. F. Haught 39 Fox Den Road Glastonburg, Conn. 06033

Dr. F. J. Fader 197 Foote Road, S. Glastonburg, Conn. 06073

Dr. Fred Schwirzke Naval Postgraduate School Monterey, Calif. 92940

Dr. M. B. Gottlieb Forrestal Research Center P. O. Box 451 Princeton, N. J. 08540

Dr. F. L. Ribe P. O. Box 1663 Los Alamos, New Mexico 87544

Dr. T. K. Fowler Lawrence Livermore Lab. P. O. Box 808 Livermore, Calif. 94551

Dr. Herman Postma Bldg. 9201-2 336 T-12 Oak Ridge, Tenn. 73830

Dr. J. Rand McNally 103 Norman Lane Oak Ridge, Tenn. 73830

Dr. Wulf Kunkel Dept. of Physics University of California Berkeley, Calif. 94720

Dr. Harry Dreicer P.O. Box 1653 Los Alamos, New Mexico 87544 Dr. Franz Johoda P. O. Box 1663 Los Alamos, New Mexico 87544

Dr. Ralph Lovberg 4744 Panorama Drive San Diego, Calif. 92116

Dr. Herbert W. Friedman Avco Everett Res. Labs. 2585 Revere Beach Parkway Everett, Mass. 02149

Cornell University
Ithaca, New York 14850
ATTN: Dr. David Morse
Dr. R. N. Sudan
Dr. C. B. Wharton
Dr. Hans Fleischman
Dr. J. A. Nation

Dr. Joseph Fergusen
Dept. of Physics
Mississippi State University
State College, Miss. 39762

Dr. Robert J. Mackin, Jr. 2622 N. Holliston Altadena, Calif. 91001

Dr. David R. Bach 8 Heatheridge Ann Arbor, Mich. 48104

Dr. Richard Hall 1851 111 E. N. E. Bellevue, Washington 98004

Dr. Lawrence Lidsky 1784 Washington St. Newton, Mass. 02166

H. Ahlstrom / L. Steinberg
Dept. of Aeronautics and Astronautics
Univ. of Washington
Seattle, Wash. 98105

Dr. David Koopman Inst. Fluid Dynamics University of Maryland College Park, Md. 20740

Columbia University
New York, N. Y. 10023
ATTN: Dr. Robert Gross
Dr. S. P. Schlesinger